Obama’s supercomputer order gets a step closer

Jun, 2016 | Technology

“A modern supercomputer’s electricity bill can easily top £60 million pounds”

Back in July 2015, Obama put executive orders out for the USA to build the world’s fastest supercomputer by 2025, this order created the National Strategic Computing Initiative. The current fastest supercomputer resides in China and is called Tianhe-2 and is in China’s National Computer Centre, Guangzhou, performs at 33.86 petaflops (PFLOPS – quadrillions of calculations per second), almost twice as fast as the second-quickest machine, which is American. The University of California, Davis, Department of Electrical and Computer Engineering may have taken the US a step closer, having developed what is believed to be the worlds first 1000 processor microchip. 

The chip is called  “KiloCore”, is energy efficient, has a maximum computation rate of 1.78 trillion instructions per second and contains 621 million transistors. Each of its processors is independently programmable and each one can share data directly with any other processor on the chip, thus allowing the break up of an application into many small pieces, each of which can run in parallel on different processors, enabling high throughput with lower energy use. The fact each processor can share data directly with each other means that the normal bottleneck of relying on pooled data is circumvented.

The team that developed it believe that KiloCore maybe one of the most energy efficient microchips developed to date. For example, the 1,000 processors can execute 115 billion instructions per second while dissipating only 0.7 Watts, low enough to be powered by a single AA battery. The KiloCore chip executes instructions more than 100 times more efficiently than a modern laptop processor.

Chart by Visualizer

The world’s fastest supercomputers. The peak speed (Rmax) is shown in PFLOPS (A petaflop is a measure of a computer’s processing speed and can be expressed as a thousand trillion floating point operations per second. FLOPS are floating-point operations per second). The KiloCore’s peak speed in PFLOPS would be 0.0078.

The KiloCore’s first use will potentially be wireless coding/decoding, video processing, encryption, and others involving large amounts of parallel data such as scientific data applications and datacenter record processing. It’s creation does offer a path to create a new supercomputer in the future, albeit a small step. One of the biggest issues in completing Obama’s order is that modern supercomputers need to become more energy efficient to become faster. A modern supercomputer’s electricity bill can easily top £60 million pounds. Obama’s vision is for a computer capable of doing one quintillion (a billion billion) calculations per second – a figure which is known as one exaflop. It is a tall order but one that is edging slowly closer, A computer capable of doing exaflop speed calculations would allow more complex modelling such as those needed to understand global warming.

Reference(s)

  1. https://www.ucdavis.edu/news/worlds-first-1000-processor-chip (Accessed 19th June 2016)
  2. http://www.top500.org/ (Accessed June 19th 2016). 

[spacerpanel id=”2″]More in Technology[/spacerpanel]

  • New report offers blueprint for regulation of...
    on September, 2022 at 5:34 pm

    A new report outlines a model law for facial recognition technology to protect against harmful use of this technology, but also foster innovation for public benefit.

  • New research can help electric utilities account...
    on September, 2022 at 5:34 pm

    Researchers have devised a method to determine the impact of climate change on the supply and variability of local renewable energy. An increase in unusual weather patterns related to climate change means the demand for power and the availability of solar, hydro and wind energy can all become more […]

  • Catalytic process with lignin could enable 100%...
    on September, 2022 at 4:51 pm

    An underutilized natural resource could be just what the airline industry needs to curb carbon emissions. Researchers report success in using lignin as a path toward a drop-in 100% sustainable aviation fuel. Lignin makes up the rigid parts of the cell walls of plants. Other parts of plants are used […]

  • Powerful Bragg reflector with ultrahigh...
    on September, 2022 at 3:13 pm

    Researchers report the development of ultrahigh refractive index metamaterials which are integrated with a low refractive index polymer producing distributed Bragg reflector (DBR). The highest refractive index in the visible and near-infrared regions was reported. The new technology is applicable […]

Pin It on Pinterest